News Nation Logo

New ultra-sensitive, UV light sensor to detect fires

Researchers At The University Of Surrey’s Advanced Technology Institute Manipulated Zinc Oxide, Producing Nanowires From This Readily Available Material To Create An Ultra-violet Light Detector Which Is 10,000 Times More Sensitive To UV Light Than A Traditional Zinc Oxide Detector.

PTI | Updated on: 20 Feb 2015, 09:17:21 PM

London:

A material traditionally used in ceramics, glass and paint, can be manipulated to produce an ultra-sensitive UV light sensor, paving the way for improved fire and gas detection, researchers have found.

Researchers at the University of Surrey’s Advanced Technology Institute manipulated zinc oxide, producing nanowires from this readily available material to create an ultra-violet light detector which is 10,000 times more sensitive to UV light than a traditional zinc oxide detector.

Currently, photoelectric smoke sensors detect larger smoke particles found in dense smoke, but are not as sensitive to small particles of smoke from rapidly burning fires.

Researchers believe that this new material could increase sensitivity and allow the sensor to detect distinct particles emitted at the early stages of fires.

“UV light detectors made from zinc oxide have been used widely for some time but we have taken the material a step further to massively increase its performance,” said Professor Ravi Silva, co-author of the study and head of the Advanced Technology Institute.

“Essentially, we transformed zinc oxide from a flat film to a structure with bristle-like nanowires, increasing surface area and therefore increasing sensitivity and reaction speed,” Silva said.

The team predicts that the applications for this material could be far reaching. From fire and gas detection to air pollution monitoring, they believe the sensor could also be incorporated into personal electronic devices, such as phones and tablets, to increase speed, with a response time 1,000 times faster than traditional zinc oxide detectors.

“Due to the way in which this material is manufactured, it is ideally suited for use in future flexible electronics, a hugely exciting area,” said Silva.

The study is published in the journal Scientific Reports.

For all the Latest Tech News News, Technology News, Download News Nation Android and iOS Mobile Apps.

First Published : 20 Feb 2015, 09:14:00 PM

Videos