Cosmic rays from superstar Eta Carinae may reach Earth: NASA

05 July 2018, 04:05 PM
(Photo: NASA)
(Photo: NASA)

Eta Carinae, the most luminous and massive stellar system within 10,000 light-years, is accelerating particles to high energies, some of which may reach Earth as cosmic rays, a study has found.

“We know the blast waves of exploded stars can accelerate cosmic ray particles to speeds comparable to that of light, an incredible energy boost,” an astrophysicist at NASA’s Goddard Space Flight Center in the US, Kenji Hamaguchi said.

“Similar processes must occur in other extreme environments. Our analysis indicates Eta Carinae is one of them,” Hamaguchi said.

Cosmic rays with energies more powerful than one billion electron volts (eV) come to earth from beyond our solar system.

However, their electrons, protons and atomic nuclei, veer off course whenever they encounter magnetic fields. This scrambles their paths and masks their origins.

Eta Carinae, located about 7,500 light-years away in the southern constellation of Carina, is famous for a 19th century outburst that briefly made it the second-brightest star in the sky.

The system contains a pair of massive stars whose eccentric orbits bring them unusually close every 5.5 years.

The stars contain 90 and 30 times the mass of our Sun and pass 225 million kilometers apart at their closest approach.

“Both of Eta Carinae’s stars drive powerful outflows called stellar winds,” Michael Corcoran, also from Goddard, said.

“Where these winds clash changes during the orbital cycle, which produces a periodic signal in low-energy X-rays we have been tracking for more than two decades,” Corcoran said.

Also, NASA’s Fermi Gamma-ray Space Telescope had previously been observing a change in gamma rays - light packing far more energy than X-rays - from a source in the direction of Eta Carinae.

However, astronomers could not confirm the connection as Fermi’s vision is not as sharp as X-ray telescopes.

Hamaguchi and his colleagues turned to NuSTAR space telescope to bridge the gap between low-energy X-ray monitoring and Fermi observations.

Eta Carinae’s low-energy, or soft, X-rays come from gas at the interface of the colliding stellar winds, where temperatures exceed 40 million degrees Celsius.

However, NuSTAR detects a source emitting X-rays above 30,000 eV. For comparison, the energy of visible light ranges from about 2 to 3 eV.

The team’s analysis shows that these “hard” X-rays vary with the binary orbital period and show a similar pattern of energy output as the gamma rays observed by Fermi.

The study was published in the journal Nature Astronomy. 

(With inputs fom agencies)

First Published: Thursday, July 05, 2018 03:54 PM
For all the latest Science News Download the News Nation App available on Android and iOS.