Maharashtra-Haryana Assembly Elections

Travelling in space can alter your brain, affect vision on long missions: Study

New Delhi, News Nation Bureau | Updated : 29 October 2018, 08:12 AM
Travelling in space can alter your brain, affect vision on long missions: Study
Travelling in space can alter your brain, affect vision on long missions: Study

Travelling in space may lead to lasting effects on the brain, the first long-term study in Russian cosmonauts has warned. It can also cause lead to muscle atrophy and reductions in bone density. Little is known about how different tissues of the brain react to exposure to microgravity, said researcher from Ludwig Maximilian University of Munich (LMU) in Germany.

ALSO READ | NASA's Parker Solar Probe moves towards Sun; sends view of Earth home 

It remains unclear whether and to what extent the neuroanatomical changes so far observed persist following return to normal gravity, they said.

The brain scans of astronauts revealed significant structural changes as a result of these extra-terrestrial journeys. Their brains shifted upwards and the cerebrospinal fluid (CSF) spaces at the top of the brain were found to be narrowed. Interestingly enough, these significant changes were only found in the brains of the astronauts who endured longer space travel.

“The changes we have seen may explain unusual symptoms experienced by returning space station astronauts and help identify key issues in the planning of longer-duration space exploration, including missions to Mars,” said Dr. Michael Antonucci, a neuroradiologist at the Medical University of South Carolina (MUSC).

The study, which appears in the New England Journal of Medicine, shows that differential changes in the three main tissue volumes of the brain remain detectable for at least half a year after the end of their last mission.

The study was carried out on ten cosmonauts, each of whom had spent an average of 189 days on board the International Space Station (ISS).

The researchers used magnetic resonance tomography (MRT) to image the brains of the subjects both before and shortly after the conclusion of their long-term missions.

In addition, seven members of the cohort were re-examined seven months after their return from space.

"This is actually the first study in which it has been possible to objectively quantify changes in brain structures following a space mission also including an extended follow-up period," said Peter zu Eulenburg, a professor at LMU.

The MRT scans performed in the days after the return to Earth revealed that the volume of the grey matter (the part of the cerebral cortex that mainly consists of the cell bodies of the neurons) was reduced compared to the baseline measurement before launch.

In the follow-up scans done 7 months later, this effect was partly reversed, but nevertheless still detectable.

ALSO READ | Ayodhya Land Dispute: SC likely to hear petitions against Allahabad HC verdict today

In contrast, the volume of the cerebrospinal fluid, which fills the inner and outer cavities of the brain, increased within the cortex during long-term exposure to microgravity.

Moreover, this process was also observable in the outside spaces that cover the brain after the return to Earth, while the cerebrospinal fluid spaces within returned to near normal size.

The white matter tissue volume (those parts of the brain that are primarily made up of nerve fibres) appeared to be unchanged upon investigation immediately after landing.

However, the subsequent examination 6 months later showed a widespread reduction in volume relative to both earlier measurements.

In this case, the researchers postulate that over the course of a longer stint in space, the volume of the white matter may slowly be replaced by an influx of cerebrospinal fluid.

Upon return to Earth, this process is then gradually reversed, which then results in a relative reduction of white matter volume.

"Taken together, our results point to prolonged changes in the pattern of cerebrospinal fluid circulation over a period of at least seven months following the return to Earth," said zu Eulenburg.

"However, whether or not the extensive alterations shown in the grey and the white matter lead to any changes in cognition remains unclear at present," he said.

(With inputs from agencies)






First Published: Monday, October 29, 2018 07:08 AM

Related Tags:

Post Comment (+)